Search results for "Ring of integers"

showing 2 items of 2 documents

Computing generators of the tame kernel of a global function field

2006

Abstract The group K 2 of a curve C over a finite field is equal to the tame kernel of the corresponding function field. We describe two algorithms for computing generators of the tame kernel of a global function field. The first algorithm uses the transfer map and the fact that the l -torsion can easily be described if the ground field contains the l th roots of unity. The second method is inspired by an algorithm of Belabas and Gangl for computing generators of K 2 of the ring of integers in a number field. We finally give the generators of the tame kernel for some elliptic function fields.

Discrete mathematicsPure mathematicsAlgebra and Number TheoryGlobal function fieldsRoot of unityElliptic functionAlgebraic number fieldK-theoryRing of integersAlgorithmic number theoryGround fieldComputational MathematicsFinite fieldTorsion (algebra)Function fieldMathematicsJournal of Symbolic Computation
researchProduct

Quantum computing thanks to Bianchi groups

2018

It has been shown that the concept of a magic state (in universal quantum computing: uqc) and that of a minimal informationally complete positive operator valued measure: MIC-POVMs (in quantum measurements) are in good agreement when such a magic state is selected in the set of non-stabilizer eigenstates of permutation gates with the Pauli group acting on it [1]. Further work observed that most found low-dimensional MICs may be built from subgroups of the modular group PS L(2, Z) [2] and that this can be understood from the picture of the trefoil knot and related 3-manifolds [3]. Here one concentrates on Bianchi groups PS L(2, O10) (with O10 the integer ring over the imaginary quadratic fie…

Discrete mathematics[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph]010308 nuclear & particles physicsPhysicsQC1-999010103 numerical & computational mathematics01 natural sciencesRing of integers[SPI.MAT]Engineering Sciences [physics]/MaterialsModular group0103 physical sciencesPauli groupQuadratic field0101 mathematics[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsQuantumEigenvalues and eigenvectorsTrefoil knotQuantum computerMathematics
researchProduct